True upper bounds for Bermudan products via non-nested Monte Carlo

نویسندگان

  • Denis Belomestny
  • Christian Bender
  • John Schoenmakers
چکیده

We present a generic non-nested Monte Carlo procedure for computing true upper bounds for Bermudan products, given an approximation of the Snell envelope. The pleonastic “true” stresses that, by construction, the estimator is biased above the Snell envelope. The key idea is a regression estimator for the Doob martingale part of the approximative Snell envelope, which preserves the martingale property. The so constructed martingale can be employed for computing tight dual upper bounds without nested simulation. In general, this martingale can also be used as a control variate for simulation of conditional expectations. In this context, we develop a variance reduced version of the nested primal-dual estimator (Andersen and Broadie, 2004). Numerical experiments indicate the efficiency of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Estimation of True Bounds on Bermudan Option Prices Under Jump-diffusion Processes

Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the “true martingale algorithm” proposed by Belomestny et al. (2009) for the pure-diffusion models to the jump-diffusion models, to fast compute true tight...

متن کامل

Optimal dual martingales and their stability; fast evaluation of Bermudan products via dual backward regression

In this paper we introduce and study the concept of optimal and surely optimal dual martingales in the context of dual valuation of Bermudan options. We provide a theorem which give conditions for a martingale to be surely optimal, and a stability theorem concerning martingales which are near to be surely optimal in a sense. Guided by these theorems we develop a regression based backward constr...

متن کامل

A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options

This paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multi-dimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretelyexercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of...

متن کامل

Optimal Dual Martingales, Their Analysis, and Application to New Algorithms for Bermudan Products

In this paper we introduce and study the concept of optimal and surely optimal dual martingales in the context of dual valuation of Bermudan options, and outline the development of new algorithms in this context. We provide a characterization theorem, a theorem which gives conditions for a martingale to be surely optimal, and a stability theorem concerning martingales which are near to be surel...

متن کامل

Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options

T paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multidimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretely exercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007